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Compliant shell mechanisms
BY K. A. SEFFEN*

Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK

This paper describes a class of lightweight structures known as compliant shell
mechanisms. These are novel reconfigurable solutions for advanced structures, such as
morphing shells and deployable membranes. They have local, discrete corrugations, which
articulate and deform to achieve dramatic changes in the overall shape of the shell. The
unique kinematics are considered by highlighting examples and by performing analysis
using established and novel concepts, and favourable predictions of shape compared with
laboratory models are demonstrated.

Keywords: compliant shell mechanisms; kinematical analysis; lightweight structures

1. Introduction

Compliant shell mechanisms are open, thin-walled, discretely corrugated
structures, with flat facets or curved regions of shell interconnected by folds or
hinge lines. The ‘egg-box’ in figure 1 [1] typifies their unusual properties: they
are soft in certain directions before stiffening considerably, there is sometimes
kinematical coupling between modes, they can be much stiffer in other directions
from the outset, and they can be simply made—here, they are constructed from
paper card. Their simplicity of form coupled to their unconventional performance
may inspire novel solutions for advanced shell structures, for example, in
so-called shape-changing (or ‘morphing’) aircraft [2], where traditional lightweight
materials such as fibrous composites may falter. Developments in packaging may
also benefit in structural and compaction terms, so that material usage and,
ultimately, waste volume can be minimized.

Their compliance follows from the elastic deformation of the corrugations
coupled to mechanistic articulation about the hinge lines. These are not
independent kinematical modes; rather, they are prescriptive upon one another,
resulting in a uniquely defined, low elastic stiffness in the same direction.
The distribution and pattern of corrugations within the plane of the shell
also determines any kinematical coupling, with the remaining modes being
considerably stiffer. Understanding the relationship between the corrugation
properties and the complete stiffness character of these shells is therefore
imperative, so that their ability to carry loads and change shape safely is ensured.
In this study, I begin by concentrating mainly on kinematical concepts, which aim
*kas14@cam.ac.uk
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Compliant shell mechanisms 2011

(a) (b) (c)

Figure 1. One type of compliant shell mechanism: a doubly and discretely corrugated ‘egg-box’ shell
made from paper card. (a) A load-free, flat state. (b) The shell is manually compressed in a soft
direction and extends in the orthogonal direction. (c) Out-of-plane bending to form a distinctive,
doubly curved shape. These pictures are reproduced from Norman [1].

(a) (b) (c) (d)

Figure 2. Hyperbolic paraboloids, or ‘hypars’, made by folding paper card. (a) A square-based
hypar template: the black lines are folded in the opposite direction to the grey lines, to form
corrugations. (b) The out-of-plane saddle shape that gives rise to the name of shell. (c) One of the
parabolic saddle axes is more clearly visible. (d) A circle-based hypar with concentric corrugations,
deforms in the same way by twisting out-of-plane.

to complement the general theme of layered structures in this Theme Issue, in
the following way. Although the shells are essentially single-layered structures
that can stretch and bend, I focus on capturing the hierarchy between the local,
discrete nature of the shell and its overall shape. To this end, I define meta-
surfaces that enforce compatibility requirements and afford a homogenized view
of the global deformation. Thus, the ‘layered’ aspect underpins the analytical
approach rather than being entirely based on physical properties.

I begin by distinguishing between shells that can be made by developing, or
folding from, a flat sheet and those that are constructed in a non-developable
manner, usually by joining flat strips along their edges. Strictly speaking, the
former have no elastic stiffness in their soft directions because, by definition,
the folding process itself is tantamount to an in-plane strain, which applies
to every shape from the initial flat state of the sheet to the final state. The
corrugated square-based hyperbolic paraboloid (or ‘hypar’) shown in figure 2
reveals something different. Even though it is formed in a developable manner, it
becomes twisted overall into its namesake as the corrugations are made to close
under in-plane compression. Locally, the corrugations also twist and resist further
deformation, and the hypar now behaves as a compliant shell mechanism.

The hypar neatly indicates the hierarchical nature of the compatibility
requirement between the corrugations and the overall shape, present in all
compliant shell mechanisms. It also suggests, in a simplified way, how one may

Phil. Trans. R. Soc. A (2012)
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begin to quantify these requirements. One may first neglect any local elastic
deformation due to the developable assumption, provided the displacements
are not too large. The intricate three-dimensionality of the shape can then be
decoupled into the average, or middle, surface of the hypar and the effect of
the corrugations opening or closing. The latter can be represented as an in-plane
strain, which permits the shape of the middle surface to be found using one of two
classical approaches. The first considers an extrinsic view, in which coordinate
sets describe the shape of the middle surface in terms of an effective corrugation
strain. The second approach uses intrinsic properties, where the overall shape is
described by the Gaussian curvature and the angular defect of the sheet caused
by the corrugation behaviour. These methods are described in §2 and are applied
to both the square- and circular-based hypar; fair descriptions of behaviour are
obtained despite the simplifying assumptions.

In §3, I present a curved corrugated shell, formed by joining curved strips
of constant width along their adjacent edges. This shell is a true compliant
mechanism in which each corrugation elastically deforms from the outset. There is
also coupling between global modes, which is most simply demonstrated during
unidirectional bending: when the shell is pulled apart across the corrugations,
it becomes more tightly curved along them, and vice versa. The kinematical
performance of the middle surface can be considered again in terms of an
effective corrugation strain, which is formulated in terms of the invariant
geodesic curvature of the original shell strips for a compact description. Because
the shell deforms uniformly and inextensibly throughout, there is no spatial
variation of shape in each corrugation: the strain energy stored in them
can be found easily, and the large displacement stiffness of the shell follows
without difficulty.

This shell also exhibits bidirectional bending into a cap or a saddle shape,
and extremely so under larger displacements. This contradicts the general
expectation of a developable shape such as a cone or a cylinder under asymptotic
conditions, but it is an important result because it increases the range of
possible geometrical transformations. The non-developable deformation is only
apparent, as it is wrought by the corrugations opening and closing non-
uniformly along their lengths. The sense of overall shape is better captured
by thinking about each corrugation deforming between bounding planes rather
than using the middle surface concept from before. The reason is subtle and
will be explained, and it introduces another conceptual tool for tackling the
kinematical hierarchy.

In §4, I consider doubly corrugated shells, returning to the egg-box in
figure 1 and comparing it with the well-known developable Miura-ori shell.
The egg-box is constructed differently, by interconnecting shaped strips, and
thus it has embedded Gaussian curvature. During in-plane deformation, both
exhibit high compliance but opposing Poisson effects: the Miura sheet expands
or contracts in all directions and has a negative Poisson’s ratio, whereas
the egg-box has a positive Poisson’s ratio. This is not unexpected if they
are compared with ordinary materials, but they both show a remarkable
reversal of Poisson effects during bending. I do not quantify this behaviour;
rather, I describe a method for doing so, which is performed outside of
this study. Finally, I present a summary and some open research questions
in §5.

Phil. Trans. R. Soc. A (2012)
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Figure 3. Extrinsic view of the hypar deformation. (a) The general and twisted out-of-plane shape,
given by z = kxyxy. (b) A plan view of the symmetrical, in-plane displacement of the outer edges,
u, where the corner point P moves along the projected diagonal line to P′. (c) The out-of-plane
rotation of one of the outside edges, originally x = a, by angle q.

2. Hyperbolic paraboloids

Creating hyperbolic paraboloids, or ‘hypars’, from pleated paper card was
originally reported in Demaine et al. [3]. One template for a square hypar is
given in figure 2a in which sets of hinge lines are scribed onto a flat sheet in four
right-angle quadrants. Folding the hinge lines alternately to some non-zero angle
forms the troughs and crests of the corrugations. As this angle increases, the
hinge lines move closer together but rotate out of plane, and the original sheet
adopts the characteristic saddle shape, as seen in figure 2b,c. A circular hypar
with circumferential corrugations is shown in figure 2d, and it also twists out of
plane as the corrugations are made to close.

(a) Extrinsic view

In figure 3a, the centre of a square hypar of side length 2a is located at the
origin of an orthogonal set of axes, x , y, z . The alignment of the corrugations is
chosen such that the out-of-plane shape of the middle surface is described by
the twisted surface z = kxyxy, where kxy is the uniform twisting curvature: this is
the simplest continuous description of shape. Accordingly, the saddle ‘axes’ are
parabolae of opposite senses along the lines y = ±x .

The closing of the corrugations is manifest extrinsically as a symmetrical
in-plane contraction of the outside edges of the sheet. This is denoted as the
displacement, u, in figure 3b, which gives rise to an effective corrugation strain, e,
measured relative to the original flat state as u/a. The outside edges are assumed
to be axially rigid and they must also rotate by angle, q, from the flat during
contraction (figure 3c). Correspondingly, one of the corners of the sheet, P, moves
to a new point, P′, with coordinates (x , y, z) such that

x = a(1 − e), y = a(1 − e), z = kxyxy = kxya2(1 − e)2. (2.1)

It is also evident from figure 3c that cos q = a(1 − e)/a and sin q = z/a.
Substituting for z from (2.1), using the identity cos2 q + sin2 q = 1, and

Phil. Trans. R. Soc. A (2012)
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Figure 4. Intrinsic view of the hypar deformation. (a) A plan view of the deformed hypar, which
has been laid flat after cutting along the intervening diagonals without changing the in-plane
corrugation strain. The corresponding increase in the angle of each original quadrant is b, whose
central vertex displaces by u. (b) The quadrants from (a) are now reconnected but without changing
the corrugation strain. The quadrants remain as flat facets and meet at a vertex. (c) A general
sector subtending angle x in a circular hypar. This sector in the deformed configuration is cut
out and laid flat in (d) in the same manner as described in (a), where the sector angle increases
to x + b.

rearranging, it can be verified that

k2
xy = 1

a2

[
1 − (1 − e)2

(1 − e)4

]
. (2.2)

This expression correctly shows that the twisting becomes very large as e tends
to unity when the hypar contracts to virtually nothing; conversely, when e � 1,
k2

xy is approximately 2e/a2.

(b) Intrinsic view

Alternatively, consider the deformed hypar in figure 4a, which has been laid
flat by cutting along both sets of diagonal lines but without changing the state
of in-plane strain in each quadrant. If all corrugations are assumed to deform
uniformly and identically, the quadrants remain triangular but are now obtuse.
The increase beyond the right angle is denoted as b, and is formally known as the
angular excess [4]. The corresponding in-plane displacement, u, can be measured
outwards from the origin, and it is straightforward to calculate that

tan
(

p

4
+ b

2

)
= 1

(1 − e)
⇒ b = 2 arctan

(
e

2 − e

)
, (2.3)

in which the effective strain is again e = u/a: for small strains, b ≈ e.
When the deformed quadrants are reconnected along their edges, the overall

shape must twist out of plane (figure 4b). This shape appears to be a contracted
hypar, but the middle surface of each quadrant remains flat within in its own plane
and meets at a sharp vertex in the centre. This vertex is key, for the global shape
can now be described in terms of a singular Gaussian curvature concentrated at
the vertex, and measured according to the formal definition as [4]

g = total angular defect
associated area

. (2.4)

Phil. Trans. R. Soc. A (2012)
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Figure 5. Local deformation of the corrugations in the square hypar. (a) Helical twisting of the
hinge lines along their axes. (b) The net middle surface of each corrugation remains symmetrical
and moves normal to the original hinge lines despite the helical twisting exhibited in (a) because the
troughs and crests perform antisymmetrically. (c) A schematic of a single corrugation deforming
out-of-plane under sizeable displacements. Along each quadrant edge, the ends of the corrugation
are rotated in opposite senses, to maintain the continuity of shape with ends in adjacent quadrants,
and this leads to the indicated twisting of hinge lines.

Strictly, g is the change in Gaussian curvature, the angular defect is the opposite
of the angular excess and the vertex is encapsulated by the associated area of
the original flat sheet: these properties are intrinsic, because they are specified
without any coordinate system. This area ranges from zero to 4a2, and the total
defect is −4b, with b given by equation (2.3).

(c) Reconciliation of views

Both of the previous approaches are valid but they present different global
shapes: the intrinsic view predicts a concentrated Gaussian curvature, whereas
the uniform twisting curvature of the extrinsic view conforms to a distributed and
uniform Gaussian curvature, with g = −k2

xy by definition. The former also assumes
a uniform deformation at the level of each corrugation, in order to preserve the
straight edges between the quadrants. However, the closing of the corrugations
in the extrinsic view is implied without knowing the actual distribution of their
fold angles: in other words, the variation of the effective in-plane strain afforded
by them is not taken into account. This variation may be found by invoking the
well-known compatibility relationship for surfaces [4]:

g = −v2ex

vy2
− v2ey

vx2
+ v2gxy

vxvy
. (2.5)

The coordinate system is chosen so that the strain terms on the right-hand side
can be correlated to the effective corrugation strains. For example, in the original
quadrant, defined by x > 0 and bounded by the pair of lines y = ±x , the hinge
lines are directed along the y-axis, and the direct strain, ex , is the only viable
strain in this region. Using equation (2.5), this strain must vary quadratically
and, hence, non-uniformly, in the y-direction.

Closer examination of the deformed hypar in figure 5a reveals that the
corrugations twist along their axes and that the hinge lines are no longer straight
but modulate locally in a helical manner. This may suggest a non-uniform strain
but the troughs and crests behave antisymmetrically with respect to each other,
so that the middle surface associated with each corrugation, figure 5b, deforms

Phil. Trans. R. Soc. A (2012)
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uniformly with respect to the original hinge line axis. The reason for the twisted
hinge lines becomes apparent in figure 5c: the ends of each corrugation on the
diagonal must rotate as the out-of-plane displacements increase.

The intrinsic approach offers a reasonable view of local behaviour but the
predicted global shape is at odds with practice; the extrinsic formulation
better describes the observed shape of hypar but it does not capture properly
the expediting corrugation strains. The true behaviour is a mixture of both
performances, and may be revealed in a more elaborate kinematical formulation:
for example, in Demaine et al. [5], the twist along each corrugation can be
achieved, or relieved, by additionally creasing each pleat for true developable
behaviour. Another underlying reason is due to the inherent, discontinuous
corrugation layout in the square hypar; in the case of the circular hypar with
its continuous layout of corrugations, matters can be improved, and this is now
performed as a final exercise.

(d) Circular hypar

Figure 4c indicates a sector of a circular hypar, which subtends an angle x in
the original flat circle of radius a. An intrinsic viewpoint of the deformed hypar
implies that this angle increases to x + b while conserving the arc length of the
outer edge and the straightness of the sector radial lines, as shown in figure 4d.
This gives a nominal compressive radial strain, e = u/a, where u is the radial
displacement of the centre, such that

ax = a(1 − e)(x + b) ⇒ b = ex

1 − e
, (2.6)

where b is, again, the angular excess. The Gaussian curvature of the entire hypar
considers 2p/x sectors and, using equation (2.4),

g = −b(2p/x)
A

= − 1
A

2pe

1 − e
, (2.7)

where A is the associated area. Note that the result is independent of the original
sector angle, and the formulation may therefore be stated in elemental terms,
although the Gaussian curvature is still concentrated at the centre of the shell.
Consequently, the out-of-plane shape is continuous; if one thinks of a cone being
formed by creating an angular defect in a circular sheet, then the intrinsic view
of the circular hypar must have the opposite shape to the cone.

As far as an extrinsic view is concerned, it is convenient to refer to an
axisymmetrical coordinate system, because the effective corrugation strain acts
in the radial direction only and there is a hoop-wise uniformity in shape as well
as inextensibility in this direction. The Gaussian curvature is assumed to be
uniform throughout the shell, equal to some negative value of g. The variation in
effective strain can be found from equation (2.5), by writing it in terms of a radial
coordinate, r , and associated tensile strain, er , and integrating twice, to reveal

g = 1
r

ver

vr
⇒ er = −e = gr2

2
. (2.8)

Phil. Trans. R. Soc. A (2012)
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(a) (b) (c) (d )

Figure 6. A curved corrugated shell: the top row is reproduced from Norman & Seffen [6] and the
bottom row denotes predictions of shape following the solution of equation (3.7). The physical shell
is not made from paper card but from plastic. (a) The initial, stress-free shape. (b) Unidirectional
bending, where a transverse extension produces a more tightly coiled structure. Bidirectional
bending follows in (c) and (d) with positive and negative Gaussian curvature overall, respectively.
The simulated shapes have w = 10 mm and kg = 1/100 mm−1, and values of q0 and a, defined in
figure 8c, as: (a) 50◦, 0◦; (b) 70◦, 0◦; (c) 60◦, +8◦; (d) 60◦, −8◦.

The final strain expression is the simplest possible, assuming that there is no
strain at the hypar centre. Radial compression arises naturally and becomes larger
towards the periphery, as observed in practice, and confirmed in Demaine et al. [5].

In closing, these two views deal with different global shapes, but, unlike the
square hypar, they are both continuous in nature even though they differ in terms
of the order of distribution of Gaussian curvature. The extrinsic view, again, must
assume that the Gaussian curvature is distributed throughout the shell, and this is
a reasonable interpretation from the practical model. The intrinsic view still works
with a singular Gaussian curvature but now the shape is continuous everywhere
else; essentially, the principal curvature in the radial direction is zero but not in
the hoop-wise direction, and this ensures that the Gaussian curvature outside of
the vertex can be zero.

3. Curved corrugated shells

Figure 6a shows a corrugated shell initially curved along the corrugation axes and
forming an open cylindrical shape. When the shell is pulled apart, it becomes more
tightly coiled, and vice versa (figure 6b). But unlike the previous hypars, the shell
can acquire positive or negative Gaussian curvature: depending on the direction
of transverse bending, it can become doubly curved with curvatures in the same
sense (figure 6c), or adopt the familiar saddle shape with curvatures in opposite
senses (figure 6d).

The kinematics of the simpler case of ‘unidirectional’ bending can be treated
like the hypars, by assessing the performance of the middle surface of the shell.
The shell is constructed by joining together curved strips, similar to the template
in figure 7a, along their edges to form a compact, stress-free stack of strips. When
the stack is opened, the global curvature increases as each strip bends into a
tighter conical section.

Phil. Trans. R. Soc. A (2012)
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Figure 7. (a) A curved corrugated shell is made by taking identical curved strips of constant width,
w, centreline curvature, kg, and interconnecting them on adjacent edges as shown. (b) The resulting
shape of the shell is described by three curvatures, located on the centreline of a given corrugation
(in black): kXX , the overall cylindrical curvature of the middle surface; kg, known as the geodesic
curvature; and kxx , the local out-of-plane shell curvature of the strip. (c) Formal cross-sectional
view of the curvatures and their directions, related by the fold angle, q. The middle surface is
located halfway between troughs and crests, and X and Y are global coordinates.

This curvature is formally designated as the curvature of the middle surface,
and is denoted as kXX , where X is a global coordinate running along the
corrugation axes (figure 7b). Importantly, kXX is composed of two orthogonal
components of curvature, related by the corrugation fold angle, q (figure 7b,c).
The first component is the geodesic curvature, kg, of the centreline of the original
flat strips: this is an invariant quantity that is parallel to the strip width. The
second is the local shell curvature, which acts normal to the strips and is denoted
by kxx , where the local coordinate, x , is parallel to X . In the same cross-sectional
view, the corrugations are assumed to remain straight and untwisted, so there
is no other shell deformation, and the Y -direction is transversal and global. The
width of the strips, w, is also assumed to be much thicker than the local thickness
of the shell itself.

Let eY denote the effective in-plane corrugation strain of the middle surface,
measured relative to the flattened corrugated state. Simple geometry gives

eY = 1 − sin q, kXX = kg

cos q
, (3.1)

which can be combined into a single expression using cos2 q + sin2 q = 1, then
explicitly written in terms of the global cylindrical curvature as

k2
XX = k2

g

[1 − (1 − eY )2] . (3.2)

When q = 0, the corrugations are completely folded, eY = 1, and kXX is correctly
equal to kg. As the corrugations flatten, eY tends to zero and kXX becomes
very large: the shell becomes very tightly coiled and much stiffer in practice.
If 1/kg � w, the curvature change everywhere in each strip is approximately equal
to kxx , and an approximate expression for the strain energy stored in bending in
the shell is given by the shell area multiplied by the strain energy density, which is
equation (2.33) of Calladine [4]: (D/2)[(kxx + kyy)2 − 2(1 − n)(kxxkyy − k2

xy)]; the
flexural rigidity of the shell is D and the Poisson’s ratio is n. Here, kyy and kxy
are both zero and, from figure 7c, kxx = kg tan q. Thus, the total strain energy

Phil. Trans. R. Soc. A (2012)
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increases rapidly as the corrugations open owing to the presence of the tan2 q
term, and the corresponding transverse stiffness may be formally ascribed by
differentiating the strain energy expression twice with respect to q.

The kinematical relationships in equations (3.1) and (3.2) were first determined
by Norman et al. [7], who also proposed a bidirectional bending model using
the middle surface approach. They assume reasonably that the fold angle, q,
varies along the corrugations in the X -direction to yield double curving of the
middle surface. To make the analysis tractable, they also assume that q = q(X)
only, which dictates that the troughs and crests are identically open along a
given Y -latitude. It is possible to make the shell bend this way by carefully
manipulating it by hand, but it seems an unnatural mode. The more natural
shape in either figure 6c or d is simply held, and closer inspection suggests that,
on a given latitude, the fold angles are the same for the troughs, and for the crests,
but different from each other. It is not obvious how the middle surface approach
can be adapted for this, for it subsumes the discrete corrugation nature when a
discrete formulation is needed.

Instead, consider a single corrugation in the shell, which has been extracted in
isolation, but which deforms identically because the boundary conditions with
adjacent corrugations are properly maintained: all of the other corrugations
behave exactly the same. Figure 8a shows a corrugation with an arbitrary uniform
fold angle throughout, corresponding to the case of unidirectional bending. Each
hinge line lies in a plane, and all planes are vertical: only the outer planes are
highlighted, and they move apart as the corrugation fold angle changes; in this
figure, the outer hinge lines are troughs. During bidirectional bending, the outer
planes tilt towards each other and form a wedge space and (shown in figure 8b)
the outer hinge lines continue to touch the planes everywhere along their lengths.
Note also that the fold angle at the troughs is larger than that at the crests,
as observed.

Figure 8c indicates the origin, O, of the XY coordinate system located at the
top of the corrugation. There is a vertical symmetry plane passing through the
crest line, and various semi-angles are specified: the wedge space semi-angle is a;
the corrugation fold angle at the crest is q, and equal to q0 at O. The variation of
q with arc length, s, ensures that the distance from the crest line to each tilted
plane is the strip width, w. Extra schematic detail is furnished in figure 9a. The
global radius of curvature of the crest is denoted by r, which emanates from a
point, C, beneath the corrugation. Recall that the original geodesic curvature of
the strip centreline is kg, so that

r =
(

1
kg

+ w
2

)
cos q. (3.3)

The vertical inclination of r is defined to be h, and an elemental change in
arc length, ds, is equal to rdh.

Three additional points in line with r are highlighted: R, on the wedge vertex
line; Q, at the corrugation edge on the inclined plane; and P on the crest. The
true cross-sectional view in a tangential direction to P also shows these points,
the fold angle, q, and the component of the wedge semi-angle, a′. The relationship
to a is found easily as

tan a′ = cos h tan a, (3.4)
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P

s

q

a

q0

(a) (b) (c)

vertex line

Figure 8. Deformation of a single corrugation within a curved corrugated shell. (a) The corrugation
has a uniform fold angle everywhere and the outer hinge lines lie in vertical, parallel planes.
(b) Transverse bending of the entire shell causes the outer planes in (a) to tilt: this forms a
wedge space and the outer hinges maintain contact with these planes, in order to preserve the
local distortion of the corrugation within the shell. (c) As (b), the degree of transverse bending is
measured by the wedge space semi-angle, a, the fold angle varies from q0 at the origin, O, to q at
a general point, P, at an arc length, s, from O. The origin is located at the top of the corrugation.

and the length of PR is given by w cos q + w sin q/ tan a′. The horizontal
projection of CR is equal to (r − PR) cos h, and this is conserved when P advances
by ds to P′ if the wedge space is assumed to be uniform, with corresponding
elemental increases in q and h, i.e.

(r − PR) cos h = (r − P′R′) cos(h + dh). (3.5)

Expanding and simplifying, one has

[
r − w cos q − w sin q

tan a cos h

]
cos h

=
[

r − w cos(q + dq) − w sin(q + dq)
tan a cos(h + dh)

]
cos(h + dh)

⇒ r sin h dh + w cos q dq

tan a
− w cos q sin h dh − w sin q cos h dq = 0. (3.6)

Rearranging (3.6), observing the limit as all elemental quantities tend to zero,
and substituting for r from equation (3.3) and f = (1/kg − w/2)/w, finally reveals
the governing differential equation for the evolution of the fold angle as

dq

dh
= f tan a sin h

tan a tan q cos h − 1
. (3.7)

Phil. Trans. R. Soc. A (2012)

 on February 3, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/
http://rsta.royalsocietypublishing.org/


Compliant shell mechanisms 2021

O

C

R

R

R

Q

Q

Q

P

P

P

w

w
s

a

a

ds

h

h +dh

q

q0

r

Figure 9. Schematic elevation of the forward half of the corrugation from figure 8c. The radius of
curvature of the crest line is r at P, which is inclined at h to the vertical, and emanates from a
point C. Point R lies on the vertex line (figure 8c) and Q is on the edge of the corrugation, so
that they form a true view, which shows the fold angle, q, and the component of the wedge-space
semi-angle, a′. The true view at the origin shows the true wedge angle, a. All quantities are defined
for transverse bending with respect to positive Gaussian curvature.

This can be solved numerically for specified values of a, f and q0. Predictions
of shape are informally compared with models in figure 6, where the shape of a
single corrugation is computed and then reflected about successive edge planes
to form the complete shell. As can be seen, there is a favourable correlation,
encouragingly so when the displacements are clearly large.

Finally, note that equation (3.7) can be simplified when a is small by setting
the denominator equal to unity. It may be integrated directly to give

dq

dh
≈ f tan a sin h ⇒ q = q0 ∓ f tan a(1 − cos h). (3.8)

The minus sign applies when the shell is bent with positive Gaussian curvature so
that, as expected, the fold angle decreases outwardly from the corrugation centre,
and vice versa.

4. Doubly corrugated shells

The previous shells are singly corrugated structures with non-intersecting hinge
lines. The shell in figure 10 is made by interconnecting the pattern of undulating
flat strips in figure 10a along their adjacent edges [1]. This produces a globally flat
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(a) (b) (c) (d )

Figure 10. More detail on the egg-box shell from figure 1. (a) The shell is constructed from identical
strips in which adjacent edges are connected to form one set of hinge lines, while another set is
formed by folding across the strips along the indicated black lines. (b) One globally flat state, which
is compressed in-plane in (c): although it is difficult to see, the shell expands in the direction normal
to compression, giving rise to a positive effective Poisson’s ratio. (d) Out-of-plane bending of the
shell produces synclastic, or same-sense, curvatures, which suggests a negative Poisson’s ratio.

egg-box shell, figure 10b, with orthogonal sets of overlapping hinge lines, resulting
in a doubly corrugated form. The shell is compliant in directions parallel to the
hinge lines, but these modes are coupled: when it is compressed or stretched
in-plane, accordingly, it expands or contracts in the other direction (figure 10c),
and vice versa. The effective performance asserts a positive Poisson’s ratio—as
in most engineering materials. The shell also resists any shear deformation of
the hinge lines and is stiff in this mode, and stiffening due to interference
of the hinge lines is not considered.

Unlike singly corrugated shells, movement along one of the compliant directions
is relieved by the second without need of out-of-plane distortions. Bending alone,
however, is remarkable, as noted in §1. Figure 10d shows that there is double
curving in the same sense and the global shape resembles a spherical cap. These
synclastic curvatures are associated with materials in which the Poisson’s ratio
is negative, and this clearly conflicts with the in-plane performance.

The Miura-ori shell in figure 11 also has intersecting hinge lines but it differs
physically from the egg-box in two ways. It is developable and the hinge lines
are crooked; and a typical folding pattern is indicated. Its corresponding in-
plane behaviour is well known and has been used to explain, for example, folding
mechanisms in leaves [8]: its effective Poisson’s ratio is negative, and the sheet
expands in all directions when pulled transversely, and vice versa. This is quite
different from the egg-box; but like the egg-box, the effective Poisson’s ratio in
bending is reversed, and the Miura-ori shell deforms with anticlastic curvatures
when it is bent transversely.

Separately, both shells have paradoxical in-plane and out-of-plane
performances, and together they behave in a contradictory fashion to one another.
Their effective properties are therefore novel and they also demonstrate that a
globally flat sheet can acquire Gaussian curvature overall. Thus far, only the in-
plane kinematics of the Miura-ori shell have been extensively studied, usually by
means of a unit cell approach, owing to the repetitive pattern formed by the hinge
lines when viewed in plan; the key to its negative Poisson’s ratio is the re-entrant
profile of this unit cell [9].

Curving of the Miura-ori shell is less well understood; in particular, how to
formulate accurate assumptions about the deformation of the shell facets, for it
is clear from handling the sheet that the facets do deform locally, and overall
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(b)(a) (c) (d)

Figure 11. A doubly corrugated shell using the Miura-ori folding pattern. (a) This pattern comprises
two sets of differently coloured hinge lines, which are folded in opposite senses; for example, the
grey lines form valleys and black lines form ridges. (b) One initial flat state, which expands in
all directions in (c) upon unidirectional in-plane extension. (d) Bending out-of-plane results in
anticlastic curvatures. The effective Poisson’s ratios in (c) and (d) are negative and positive,
respectively, in opposition to the previous egg-box shell.

it behaves as a compliant shell mechanism. One recent numerical scheme uses a
folded plate model [10] in which the facets are subdivided into rigid triangular
plates capable of rotating relative to each other, in order to simulate local bending
with a specified stiffness. Early results are promising and the final study will be
published elsewhere [11]. The folded plate model has also been used to devise a
global stiffness matrix for the egg-box, which is then used in a modal vibration
analysis to reveal the natural mode shapes [1]. This approach confirms that
same-sense double curving is indeed a low-stiffness mode and is a preferential
deformed shape. It is, however, an holistic approach, it requires an elaborate
discretization scheme, and it does not inform explicitly on the hierarchical nature
of deformation.

I propose that the latter can be ascribed to unit cells deforming identically
within constraining planes obviated by the global deformation of the sheet: this
is similar to the case of the corrugated shell in §2, except that there are more
than two bounding planes. The particular unit cell is revealed in figure 12a by
first highlighting the salient vertices and then choosing the simplest symmetrical
cell without cutting any of the facets. The cell comprises four facets, figure 12b,
and the internal hinge lines are, respectively, inclined at angles q1 and q2 to the
horizontal. The periphery of the cell is the outer hinge lines, and these always
touch the bounding planes and have relative inclinations q3 and q4. All angles are
semi-angles because the modes considered here are globally symmetrical. They
are not independent angles but are related under the constraints of the imposed
deformation. For example, figure 12c shows compression of the unit cell in one
direction with orthogonal expansion. This is accomplished by the bounding planes
moving but remaining vertical, and by the hinge lines rotating: q1 and q3 increase,
and q2 and q4 must decrease. Moreover, q1 = −q2, if the rotations are assumed
to be small, and the angular defect of the vertex remains unchanged: there is no
planar stretching or compression of each facet, whose geometry may therefore be
assumed to remain fixed, which leads to a fairly straightforward determination
of an effective positive Poisson’s ratio. Figure 12d instead displays the unit cell
deforming when there is spherical curving overall. It is clear in this case that,
as the planes tilt symmetrically towards each other, q1 and q2 must increase,
and q3 and q4 decrease. Correspondingly, the angular defect of the vertex also
changes, and this invokes stretching or compression of the facet when its edges
are constrained to lie within the bounding planes. In response, each facet appears
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(a) (b) (c) (d)

q1

q2

q3 q4

Figure 12. Deformation of a unit cell from the egg-box shell. (a) Distinguishing between the vertices
allows identification of a unit cell with four facets. (b) Two views of the unit cell taken within a
globally flat sheet. Top: inclination angles, q1 to q4, which apply to each pair of hinge lines; bottom:
the unit cell periphery of the emboldened hinge lines always lies within the bounding planes, which
themselves conform to the global deformation of the sheet. (c) Pure in-plane deformation of the cell.
Compared with (b), q1 and q3 increase, and q2 and q4 decrease. The bounding planes are vertical and
their displacements show the effective Poisson’s ratio as being positive. (d) Unit cell deformation
under global double curving in the same sense. Compared with (b), q1 and q2 increase, and q3 and
q4 decrease. The bounding planes tilt towards each other to reveal a negative Poisson’s ratio.

to bend about either of its symmetry axes on closer inspection. As a corollary, it
is suggested that developable behaviour arises if extra hinge lines are introduced
into each facet along either axis, to relieve this bending in a manner similar
to additionally creasing the pleats in the square hypar [5]: for a more detailed
exposition, the reader is referred to Schenk’s thesis [11]. Nonetheless, a negative
Poisson’s ratio is plausible, and feasible, under double curving, but the in-plane
behaviour of each facet cannot be ignored. Finally, it is worth remarking that
the tilting angles between successive unit cells cannot be the same throughout
the egg-box; rather, they must vary in both directions, because otherwise the
cells will not fit together to reveal a uniformly curved surface.

5. Summary

Compliant shell mechanisms are discretely corrugated structures, capable of
undergoing large, reversible displacements. As well as being soft in certain
directions and stiff in others, their shape-changing potential garners interest
here compared with ordinary smooth shells: they are developable, they can
furnish apparent changes in Gaussian curvature and they can offer a breadth
of coupled modes with different Poisson’s ratios. The changes in shape are
dictated by the corrugation layout and by the nonlinear interaction of local elastic
deformation and rigid-body articulation afforded by the corrugations themselves.
Thus, there is a clear kinematical hierarchy, and I have attempted to highlight
this through the behaviour of specific and fairly well-known corrugated shells
from disparate studies.
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Our understanding has been guided by two views. First, consider the entire
shape of the shell through its middle surface alone, which is taken to be smooth
and continuous. The corrugations are discounted physically but their effect is
incorporated as compatible local strains that inform the shape of the middle
surface. Alternatively, take a local view at the level of the corrugation, in
isolation from the rest of the shell. This isolated portion, or unit cell, deforms
by adhering to the correct boundary conditions on its periphery: these are
symmetrical by definition and correctly reflect the overall shape of the shell.
For pure in-plane behaviour, this is relatively straightforward to execute and,
typically, the corresponding effective properties can be used to describe the out-
of-plane bending properties. However, this is not feasible if these two responsive
modes behave in a contradictory fashion—cf. the conflicting Poisson’s ratios in
the doubly corrugated shells. This has been resolved by proposing that the unit
cell is bounded by planes that can move apart or tilt in accordance with the overall
deformation: the unit cell locally deforms and articulates as it moves within the
volumetric space created by the planes; and, to the author’s knowledge, this is a
novel approach.

There are many avenues of further research. The shells here are simply made
using regular template patterns, and it is not difficult to envisage other, possibly
irregular or non-uniform, patterns. These may help to answer what are clearly
open questions about the influence of the corrugation topology upon the character
of the compliant modes. For example, here I have shown that there is direct
coupling between in-plane and out-of-plane modes when the shells are singly
corrugated, but in doubly corrugated cases, the coupling effect is more subtle.
It is also important to consider how to make practical shells using traditional
materials, such as metals, which oblige because of their ductility and their relative
ease of forming. Finally, their complete structural behaviour must be understood:
the ability to change shape effectively has to be balanced by the structure being
stiff in other modes. These and other questions are currently being answered by
the Advanced Structures Group at Cambridge.

K.A.S. gratefully acknowledges the invitation from the editor to write this paper for this Theme
Issue. Mark Schenk and Alex Norman are thanked for their photographs of doubly corrugated
shells, and the former is thanked for many stimulating discussions on this paper.
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